Examples of Boundary Layers Associated with the Incompressible Navier - Stokes Equations
نویسندگان
چکیده
We survey a few examples of boundary layers for which the Prandtl boundary layer theory can be rigorously validated. All of them are associated with the incompressible Navier-Stokes equations for Newtonian fluids equipped with various Dirichlet boundary conditions (specified velocity). These examples include a family of (nonlinear 3D) plane parallel flows, a family of (nonlinear) parallel pipe flows, as well as flows with uniform injection and suction at the boundary. We also identify a key ingredient in establishing the validity of the Prandtl type theory, i.e., a spectral constraint on the approximate solution to the Navier-Stokes system constructed by combining the inviscid solution and the solution to the Prandtl type system. This is an additional difficulty besides the wellknown issue related to the well-posedness of the Prandtl type system. It seems that the main obstruction to the verification of the spectral constraint condition is the possible separation of boundary layers. A common theme of these examples is the inhibition of separation of boundary layers either via suppressing the velocity normal to the boundary or by injection and suction at the boundary so that the spectral constraint can be verified. A meta theorem is then presented which covers all the cases considered here.
منابع مشابه
Textbook Multigrid Efficiency for the Incompressible Navier-Stokes Equations: High Reynolds Number Wakes and Boundary Layers
Textbook multigrid efficiencies for high Reynolds number simulations based on the incompressible Navier-Stokes equations are attained for a model problem of flow past a finite flat plate. Elements of the Full Approximation Scheme multigrid algorithm, including distributed relaxation, defect correction, and boundary treatment, are presented for the three main physical aspects encountered: enteri...
متن کاملViscous boundary layers for the Navier-Stokes equations with the Navier slip conditions
We tackle the issue of the inviscid limit of the incompressible Navier-Stokes equations when the Navier slip-with-friction conditions are prescribed on the impermeable boundaries. We justify an asymptotic expansion which involves a weak amplitude boundary layer, with the same thickness as in Prandtl’s theory and a linear behavior. This analysis holds for general regular domains, in both dimensi...
متن کاملOn Pressure Approximation via Projection Methods for Nonstationary Incompressible Navier-Stokes Equations
Projection methods are an efficient tool to approximate strong solutions of the incompressible Navier-Stokes equations; as a major deficiency, these methods often suffer from reduced accuracy of pressure updates caused by nonphysical boundary data. After a short review, quantitative control of arising boundary layers in Chorin’s scheme is given under realistic regularity assumptions. Then, we p...
متن کاملThe Inviscid Limit and Boundary Layers for Navier-Stokes flows
The validity of the vanishing viscosity limit, that is, whether solutions of the Navier-Stokes equations modeling viscous incompressible flows converge to solutions of the Euler equations modeling inviscid incompressible flows as viscosity approaches zero, is one of the most fundamental issues in mathematical fluid mechanics. The problem is classified into two categories: the case when the phys...
متن کاملViscous potential flow
Potential flows u = ∇φ are solutions of the Navier–Stokes equations for viscous incompressible fluids for which the vorticity is identically zero. The viscous term μ∇u = μ∇∇φ vanishes, but the viscous contribution to the stress in an incompressible fluid (Stokes 1850) does not vanish in general. Here, we show how the viscosity of a viscous fluid in potential flow away from the boundary layers e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010